DETERMINAÇÃO DE ELEMENTOS TERRAS RARAS E ÍTRIO EM ROCHAS SILICÁTICAS POR ICP-AES COM SEPARAÇÃO EM RESINA TROCADORA DE ÍONS

M.I.A Malagutti 1,2, O. Bahia F1 1, M.M.T. Moreno1, A.J.R. Nardy1

1Departamento de Petrologia e Metalogenia - Unesp. Av. 24-A, 1.515, CEP 13508-900, Rio Claro, SP
2Pós-graduação, Instituto de Química de São Carlos - USP. Av. Princesa Isabel, 265, CEP 13560-250, São Carlos, SP

Recebido em 04/98; aprovado para publicação em 10/98

ABSTRACT

The present work proposes a method for the determination of 11 rare earth elements (REE) and yttrium, in silicate rocks, using Inductively Coupled Plasma - Atomic Emission Spectrometry (ICP-AES) and ultrasonic nebulizer (USN), with a separation step in strong cationic exchange resin, and hydrochloric acid gradient concentration. The results obtained from analysis of reference materials, in comparison to the recommended values, show satisfactory relative standard deviation, except for lanthanum with results that are systematically above the recommended values.

RESUMO

O presente trabalho propõe um método para a determinação de 11 elementos terras raras (ETRs) e ítrio, em rochas silicáticas, por Espectrometria de Emissão Atômica com Fonte de Plasma Acooplado Indutivamente (ICP-AES), utilizando-se nebulização ultra-sônica (USN), com etapa de separação em resina de troca cationica forte e gradiente de concentração de ácido clorídrico. Os resultados obtidos nas análises de materiais de referência, em comparação com os valores recomendados, apresentam erros relativos satisfatórios, com exceção do lantânio, cujos resultados obtidos estão sistematicamente acima daqueles recomendados.
INTRODUÇÃO

A Espectrometria de Emissão Atômica com Fonte de Plasma Acoplado Indutivamente (ICP-AES) é uma técnica de análise multielementar que tem despertado considerável interesse no desenvolvimento de metodologias para a determinação de elementos terras raras (ETRs) em rochas silicáicas. Um dos primeiros métodos para a determinação de ETRs por ICP-AES em materiais geológicos, usando a técnica de separação por troca iônica, foi publicado por Walsh et al. (1981), demonstrando que a utilização destas duas técnicas em conjunto é indispensável na determinação de elementos terras raras em rochas silicáicas, porque, além de eliminar interferências espectrais, permite concentrar estes elementos na solução, aumentando, consideravelmente, a sensibilidade.

Em seu estudo, para a separação cromatográfica dos ETRs, Walsh et al. (1981) utilizaram 20 g de resina de troca catiônica Dowex 50W-X8 e grandes volumes de HCl 1,75M e 8M (400 e 500 ml, respectivamente). Crock et al. (1984) prestaram grande contribuição nesta área quando estudaram a separação de ETRs e Y com resina catiônica AG 50W-X8, investigando a separação dos ETRs dos elementos da matriz da rocha com ácido nítrico e clorídrico. Em seu trabalho, observaram vantagens e desvantagens com a utilização de cada um desses ácidos. A quantidade de ácido nítrico, requerida para a clivagem dos elementos terras raras, é muito menor que a de ácido clorídrico e fornece uma ótima separação dos ETRs e Y, como um grupo, dos elementos interferentes da matriz. O ácido nítrico também é mais eficiente na remoção de Ca, Sr e Ba, não sendo, entretanto, eficaz na remoção do Fe, que é um dos elementos que causa maior interferência espectral na determinação de ETRs por ICP-AES. Assim sendo, para a sua eliminação, torna-se necessária uma segunda etapa de separação cromatográfica utilizando-se resina aniónica AG1-X8. Outra desvantagem da utilização de ácido nítrico, é que as resinas começam a deteriorar após serem regeneradas por aproximadamente 20 vezes. Outro trabalho interessante foi desenvolvido por Watkins & Nolan (1992), utilizando a mesma resina catiônica, para separar Y, Sc e Hf, juntamente com os ETRs. Os elementos interferentes foram eliminados com HCl 1,75M seguido de HNO₃ 1,75M, e os ETRs, Sc, Y e Hf foram cluídos com HNO₃ 6M, contendo ácido oxálico 5 mM. Apesar de atraente, a grande quantidade de resina e de volumes de ácidos utilizados tornam o processo bastante moroso.

O presente trabalho propõe uma metodologia que proporciona uma melhor relação entre a quantidade de amostra, de resina e volume de eluentes, utilizando gradiente de concentração de HCl para a separação dos ETRs da matriz. Além disso, elimina o cálcio e, quase que totalmente, o estrônio, o que não ocorre nos métodos propostos por Crock et al. (1984) e Walsh et al. (1981). A eficiência do método foi avaliada através da análise de 7 amostras de referência de rocha de diferentes composições.

MATERIAIS E MÉTODOS

Instrumentos e Acessórios

Para o desenvolvimento do presente trabalho utilizou-se um espectrometro de emissão atômica com fonte de plasma acoplado indutivamente ICP-AES, marca ARL modelo 3410+, sequencial, dotado de sistema mini tocha; nebulizador ultra-sônico (USN) marca CETAC modelo U-5000AT; resina catiônica Dowex 50W-X8, colunas de vidro borossilicato com 15 cm de altura e 2 cm de diâmetro interno, providas de disco de vidro sinterizado em sua extremidade inferior e de um reservatório com capacidade de 100 ml, para acondicionar as soluções de amostra e de eluentes.

Soluções Padrão e Reagentes

Na preparação das soluções foram utilizados reagentes de grau analítico e água de pureza Milli-Q (resistividade ≥ 18 MΩ/cm). As soluções padrão, em meio HCl 1,75M, utilizadas para traçar as curvas de calibração dos elementos analisados, foram obtidas a partir de diluições convenientes de soluções de 1000 μg/ml, Titrisol da Merck, para Fe, Ca e Sr, e de soluções de 1000 μg/ml, para os ETRs e Y, obtidas a partir dos respectivos óxidos puros, marca Spex. Para traçar as curvas de calibração, foram preparadas quatro soluções padrão, mais um branco, abrindo uma faixa de valores esperados, sendo que o padrão mais alto contém as seguintes concentrações: La, Ce e Y 3000 μg/l; Dy, Gd e Sm 1500 μg/l; Er, Eu e Yb 600 μg/l; Ho 1200 μg/l e Lu 300 μg/l.

Solubilização das Amostras

Os métodos normalmente utilizados para a solubilização de rochas silicáicas, visando a

Observa-se que todos os métodos que utilizam ataque ácido envolvem várias etapas, e mesmo a adição de HClO₄ às misturas ácidas, apesar de seu poder oxidante, não garante a dissolução completa de todos os minerais. Por outro lado, a utilização de fusão direta, sem eliminação da sílica, apesar de ser mais rápida, aumenta, consideravelmente, a quantidade de sais presentes na solução da amostra, sendo necessário utilizar maior quantidade de resina e maior volume de ácidos na separação cromatográfica. Dentro deste contexto, no presente trabalho, foi utilizada uma combinação dos métodos normalmente utilizados, empregando-se mistura ácida HF/HNO₃ em vasos abertos, seguida de microfusão com metaborato de litio para a solubilização dos minerais resistentes ao ataque ácido (Bahia F°. et al., 1996)

Separação Cromatográfica

Para a separação cromatográfica dos ETRs e Y presentes nas rochas, utilizou-se resina catiónica fortemente ácida, Dowex 50W-X8 com granulometria de 200-400 mesh, e capacidade de troca de 5,2 mmol H⁺/g¹ de resina seca (Marhol, 1982). A quantidade de resina utilizada foi calculada a partir da capacidade de troca da resina e da quantidade de miliequivalentes de ions, presentes em 1 g de amostra após a eliminação da sílica, tomando-se como base a composição química média dos basaltos. Esta quantidade foi duplicada a fim de se ter uma boa margem de segurança para garantir a eficiência da troca iônica.

As colunas foram preenchidas com 15 g de resina, previamente lavada com HCl 4M, e condicionadas com HCl 1M. Para a calibração das colunas e otimização do método proposto, foram traçadas curvas de eluição com HCl 1,75 M para os elementos Fe, Ca, Sr, e com HCl 8M para La, Ce, Gd, Yb e Lu, que são indicativos de início, meio e fim da eluição. Para tanto, utilizou-se uma solução sintética simulando uma matriz de rocha dopada com solução padrão de ETRs. As soluções eluídas foram coletadas em frações de 20 ml e analisadas por ICP-AES para os elementos citados.

De acordo com as Figuras 1 e 2, verificou-se que após a adição de 200 ml de HCl 1,75M, não havia mais a presença de Sr, e que 200 ml de HCl 8M são suficientes para a eluir quantitativamente os ETRs juntamente com o Y.

Procedimento Analítico

Aproximadamente 0,5 g de amostra de rocha pulverizada (<200 mesh) foi solubilizada com mistura ácida HF/HNO₃ (3+1) em bêquer de teflon aberto, aquecida em chapa elétrica até seca da total. A eliminação de HFO foi garantida por evaporação de duas adições sucessivas de 5 ml de HNO₃, deixando secar completamente. A seguir, a amostra foi dissolvida com 20 ml de HCl 1,75M quente, filtrada em papel Whatman 40 ou

![Figura 1 - Curvas de eluição para Fe, Ca e Sr com HCl 1,75 M](image)
similar e lavada com o mesmo ácido e água. O resíduo remanescente foi fundido, em cadi-
nho de platina, com 100 mg de metaborato de lítio. Após esfri-
ar, o produto da fusão foi solubili-
zado por aquecimento em HCl 1,75M e juntado à solução prin-
cipal, obtendo-se volume final de aproximadamente 50 ml.

Após a amostra ser carrega-
da na coluna contendo a resina,
previamente condicionada com
100 ml de HCl 1M, foram adi-
cionados 200 ml de HCl 1,75M. As porções eluídas foram des-
cartadas. Em seguida, os ETRs, juntamente com o Y e Ba, fo-
ram eluídos com 200 ml de HCl 8M, sendo coletados em béquer de 250 ml. Esta fração foi
aquecida em chapa elétrica e
evaporada até seca. Para a
solubilização dos sais remanes-
centes, foram utilizados entre
15,00 e 25,00 ml de HCl 1,75M,
dependendo do tipo de rocha
analisada. Esta solução foi filtra-
da a seco em papel Whatman
40 ou similar, para eliminar par-
tículas de resina, e utilizada para
a determinação dos ETRs e Y
por ICP-AES, utilizando-se
nebulização ultra-sônica.

A resina, após a separação dos
ETRs, foi lavada com 100 ml de
HCl 8M, e imediatamente lava-
da com 100 ml de água, sendo,
em seguida, recondicionada com
100 ml de HCl 1M.

Parâmetros Instrumentais

A escolha dos comprimen-
tos de onda utilizados no pre-
sente trabalho, norteados por
Winge et al. (1985), foi reali-
zada traçando-se espectros de
linhas de emissão para cada ele-
mento nas condições: branco,
solução padrão de 5 mg/ml do
ETR em estudo, e soluções pa-
drão de 1000 mg/ml dos outros
ETRs, Y e Ba. Este estudo le-
vou à escolha dos comprimen-
tos de onda apresentados na
Tabela 1, que nem sempre são
os mais sensíveis, porém com
sensibilidade adequada e míni-
ma interferência espectral.

Para o estabelecimento das
condições de operação do ICP-
AES (Quadro 1) foram estudad-
os os seguintes parâmetros:
altura de observação acima da
bobina de cobre, fluxo do gás
de arraste e fluxo de introdução
da amostra (Berman &
MacLaren, 1978), utilizando-se
como referência o elemento Mn
(λ 257,61 nm), como indicado
no manual do equipamento. Os
fluxos de gás auxiliar e refrige-
rante, e potência do plasma,
correspondem aos valores reco-
mmendados pelo fabricante.

As condições obtidas para o
Mn foram conferidas para os
ETRs e Y, utilizando-se, para
tanto, uma solução multiele-
mentar, contendo 2 μg/ml de
cada um destes elementos.

**RESULTADOS OBTIDOS E
CONCLUSÕES**

Os resultados obtidos para as
amostras de referência estão
apresentados na Tabela 2, onde, também, são apresentados os limites de determinação na rocha (L.D.R.) e os erros relativos percentuais (E.R.). Os valores de L.D.R., obtidos experimentalmente, correspondem às concentrações mínimas dos elementos presentes na amostra original, as quais, nas condições de diluição indicadas, produzem no máximo 10% de desvio de leitura no ICP-AES. Estes limites podem ser reduzidos variando-se a quantidade de amostra e/ou o volume final.

Quanto aos resultados obtidos, à exceção do lantânio, os valores foram concordantes com os recomendados, fato que se pode observar através da avaliação dos erros relativos percentuais. O E.R. obtido para o európio, para os padrões NIM-G e RGM-1, mostra valores altos devido a que suas concentrações são próximas ou abaixo do L.D.R. (0,6 µg). Os resultados obtidos para o lantânio, sistematicamente acima daqueles recomendados, sugerem provável interferência espectral, que deverão ser investigadas com mais detalhes em estudos posteriores.

O método demonstrou ser

Tabela 1 - Linhas de emissão usadas na determinação de Y e ETRs

<table>
<thead>
<tr>
<th>Elem.</th>
<th>La</th>
<th>Ce</th>
<th>Nd</th>
<th>Sm</th>
<th>Eu</th>
<th>Gd</th>
<th>Dy</th>
<th>Ho</th>
<th>Er</th>
<th>Yb</th>
<th>Lu</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ nm</td>
<td>379,48</td>
<td>418,66</td>
<td>405,11</td>
<td>428,08</td>
<td>381,97</td>
<td>342,25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>λ nm</td>
<td>340,78</td>
<td>345,6</td>
<td>369,26</td>
<td>369,42</td>
<td>261,54</td>
<td>371,03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabela 2 - Resultados obtidos na determinação de Y e ETRs para 07 amostras de referência de rocha (µg/ml).

<table>
<thead>
<tr>
<th>Padrão</th>
<th>La</th>
<th>Ce</th>
<th>Nd</th>
<th>Sm</th>
<th>Eu</th>
<th>Gd</th>
<th>Dy</th>
<th>Ho</th>
<th>Er</th>
<th>Yb</th>
<th>Lu</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE-N obtido</td>
<td>91</td>
<td>152</td>
<td>73</td>
<td>12,9</td>
<td>3,5</td>
<td>9,9</td>
<td>6,1</td>
<td>1,1</td>
<td>2,6</td>
<td>1,7</td>
<td>0,21</td>
<td>28</td>
</tr>
<tr>
<td>certif.</td>
<td>82</td>
<td>152</td>
<td>67</td>
<td>12,2</td>
<td>3,6</td>
<td>9,7</td>
<td>6,4</td>
<td>1,1</td>
<td>2,5</td>
<td>1,8</td>
<td>0,24</td>
<td>30</td>
</tr>
<tr>
<td>E.R. %</td>
<td>11,0</td>
<td>0,0</td>
<td>8,9</td>
<td>5,7</td>
<td>-2,8</td>
<td>2,1</td>
<td>-4,7</td>
<td>0,0</td>
<td>4,0</td>
<td>-5,5</td>
<td>-12,5</td>
<td>-6,7</td>
</tr>
<tr>
<td>BHVO-1 obtido</td>
<td>17,5</td>
<td>37</td>
<td>26,1</td>
<td>6,3</td>
<td>2,0</td>
<td>6,1</td>
<td>4,8</td>
<td>0,96</td>
<td>2,4</td>
<td>1,9</td>
<td>0,26</td>
<td>25</td>
</tr>
<tr>
<td>certif.</td>
<td>15,8</td>
<td>39</td>
<td>25,2</td>
<td>6,2</td>
<td>2,06</td>
<td>6,4</td>
<td>5,2</td>
<td>0,92</td>
<td>2,4</td>
<td>2,02</td>
<td>0,29</td>
<td>26</td>
</tr>
<tr>
<td>E.R. %</td>
<td>10,8</td>
<td>-5,1</td>
<td>3,6</td>
<td>1,6</td>
<td>2,9</td>
<td>-4,7</td>
<td>7,7</td>
<td>0,03</td>
<td>0,0</td>
<td>-5,9</td>
<td>-10,5</td>
<td>-10,7</td>
</tr>
<tr>
<td>NIM-G obtido</td>
<td>140</td>
<td>218</td>
<td>84</td>
<td>16,9</td>
<td>0,77</td>
<td>16</td>
<td>18</td>
<td>4,3</td>
<td>13,3</td>
<td>14</td>
<td>1,9</td>
<td>133</td>
</tr>
<tr>
<td>certif.</td>
<td>109</td>
<td>195</td>
<td>72</td>
<td>15,8</td>
<td>0,35</td>
<td>14</td>
<td>17</td>
<td>-</td>
<td>14,2</td>
<td>2</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>E.R. %</td>
<td>28,4</td>
<td>11,8</td>
<td>16,7</td>
<td>7,0</td>
<td>120</td>
<td>14,3</td>
<td>5,9</td>
<td>-1,4</td>
<td>-5,0</td>
<td>-7,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QLO-1 obtido</td>
<td>31</td>
<td>50</td>
<td>26</td>
<td>5,3</td>
<td>1,4</td>
<td>4,6</td>
<td>3,7</td>
<td>0,83</td>
<td>2,3</td>
<td>2,1</td>
<td>0,30</td>
<td>24</td>
</tr>
<tr>
<td>certif.</td>
<td>27</td>
<td>54</td>
<td>26</td>
<td>4,88</td>
<td>1,43</td>
<td>4,7</td>
<td>3,8</td>
<td>0,86</td>
<td>2,3</td>
<td>2,3</td>
<td>0,37</td>
<td>24</td>
</tr>
<tr>
<td>E.R. %</td>
<td>14,8</td>
<td>-7,4</td>
<td>0,0</td>
<td>8,6</td>
<td>2,1</td>
<td>-2,1</td>
<td>-2,6</td>
<td>-3,5</td>
<td>0,0</td>
<td>-8,7</td>
<td>-18,9</td>
<td>0,0</td>
</tr>
<tr>
<td>RGM-1 obtido</td>
<td>28</td>
<td>44</td>
<td>20</td>
<td>4,5</td>
<td>0,80</td>
<td>3,5</td>
<td>3,4</td>
<td>0,77</td>
<td>2,3</td>
<td>2,3</td>
<td>0,35</td>
<td>22</td>
</tr>
<tr>
<td>certif.</td>
<td>24</td>
<td>47</td>
<td>19</td>
<td>4,3</td>
<td>0,68</td>
<td>3,7</td>
<td>4,08</td>
<td>0,95</td>
<td>2,8</td>
<td>2,6</td>
<td>0,41</td>
<td>25</td>
</tr>
<tr>
<td>E.R. %</td>
<td>16,7</td>
<td>-6,4</td>
<td>5,3</td>
<td>4,6</td>
<td>21,2</td>
<td>-5,4</td>
<td>-16,7</td>
<td>18,9</td>
<td>-11,5</td>
<td>-11,5</td>
<td>-14,6</td>
<td>-12,0</td>
</tr>
<tr>
<td>SDC-1 obtido</td>
<td>49</td>
<td>90</td>
<td>44</td>
<td>8,9</td>
<td>1,7</td>
<td>7,0</td>
<td>5,9</td>
<td>1,5</td>
<td>3,9</td>
<td>3,9</td>
<td>0,5</td>
<td>35</td>
</tr>
<tr>
<td>certif.</td>
<td>42</td>
<td>93</td>
<td>40</td>
<td>8,2</td>
<td>1,71</td>
<td>7,2</td>
<td>6,7</td>
<td>1,5</td>
<td>4,7</td>
<td>4</td>
<td>0,53</td>
<td>40</td>
</tr>
<tr>
<td>E.R. %</td>
<td>16,7</td>
<td>-3,2</td>
<td>10,0</td>
<td>8,5</td>
<td>-0,6</td>
<td>-2,8</td>
<td>11,9</td>
<td>0,0</td>
<td>-4,9</td>
<td>-2,5</td>
<td>-5,7</td>
<td>-12,5</td>
</tr>
<tr>
<td>SY-2 obtido</td>
<td>82</td>
<td>154</td>
<td>83</td>
<td>17,4</td>
<td>2,5</td>
<td>17</td>
<td>18</td>
<td>4,7</td>
<td>14,5</td>
<td>17</td>
<td>2,6</td>
<td>130</td>
</tr>
<tr>
<td>certif.</td>
<td>75</td>
<td>175</td>
<td>73</td>
<td>16,1</td>
<td>2,42</td>
<td>17</td>
<td>18</td>
<td>3,8</td>
<td>12,4</td>
<td>17</td>
<td>2,7</td>
<td>128</td>
</tr>
<tr>
<td>E.R. %</td>
<td>9,3</td>
<td>-12,0</td>
<td>13,7</td>
<td>8,1</td>
<td>3,3</td>
<td>0,0</td>
<td>0,0</td>
<td>23,7</td>
<td>16,9</td>
<td>0,0</td>
<td>-3,7</td>
<td>1,6</td>
</tr>
</tbody>
</table>

L.D.R. µg/ml | 1,2 | 4,0 | 3,5 | 3,2 | 0,6 | 1,2 | 1,6 | 1,5 | 1,0 | 0,16 | 0,08 | 0,16 |

E.R. - Erro Relativo
L.D.R. - Limite de Determinação na Rocha, calculado para 0,5g de amostra volume final de 20 ml.
Valores sublinhados são propostos (Govindaraju, 1994).
eficiente, uma vez que os resultados obtidos para as amostras são concordantes com os recomendados e apresentam, no geral, E.R. baixos. Por outro lado, os valores de L.D.R. são compatíveis para a análise de um grande número de rochas silicáicas, inclusive aquelas com teores muito baixos de ETRs, uma vez que a quantidade de resina utilizada permite trabalhar com até 1g de amostra.

AGRADECIMENTOS

Os autores agradecem à FINEP (Programa PADCT) pelo financiamento do trabalho. Oscar Bahia Fº. agradece ao CNPQ pela bolsa de Pós-doutorado.

REFERÊNCIAS BIBLIOGRÁFICAS