Anthropogenic Zn contamination dispersion in Sepetiba Bay evidenced by Zn isotopes

RESUMO

Os processos sedimentares em ambientes costeiros desempenham um papel fundamental na dispersão espacial de contaminantes metálicos, incluindo o Zn. A combinação de assinaturas de isótopos estáveis de Zn $(\delta^{66}$ Zn) com proxies tradicionais para fontes sedimentares, processos de dispersão e pós-deposição é uma abordagem promissora para entender a dinâmica antropogênica de Zn em sistemas costeiros que ainda não foram testados. Para tanto, acoplamos ferramentas geoquímicas e isotópicas para inferir contribuições sedimentares no destino e comportamento do Zn em sedimentos superficiais da baía de Sepetiba, estado do Rio de Janeiro, cronicamente contaminada por uma antiga pilha de rejeitos de galvanoplastia enriquecidos com Zn. Os resultados mostram uma alta variabilidade nos valores de δ^{66} Zn (0,43‰ a 0,89‰) e fatores de enriquecimento de Zn (1 a 23 vezes), evidenciando um gradiente na mistura de fontes sedimentares. O biplot δ^{66} Zn versus 1/[Zn] destaca que a variabilidade isotópica de Zn da maioria das amostras é explicada por um processo de mistura entre uma fonte de Zn natural (+0,29‰, 67 mg kg⁻¹) e antropogênico (+0,89‰, 3.440 mg kg⁻¹), sendo este último atribuído à histórica contaminação metalúrgica de Zn da baía de Sepetiba. Com base no modelo de mistura de isótopos e proxies geoquímicos (por exemplo, razão elementar Ti/Al), foi possível calcular a contribuição antropogênica de Zn na Baía de Sepetiba (42% a 98%). A distribuição do enriquecimento de Zn ao longo da baía confirmou a dispersão antrópica de Zn a partir do Saco de Engenho, controlada principalmente pela corrente superficial principal, no sentido horário. A composição mineralógica dos sedimentos e as correlações entre as razões isotópicas e concentrações de Al indicam que o alto teor de Zn antropogênico está associado, principalmente à frações sedimentares de siltosas e argilosas, com partículas compostas por gibbsita, e minerais argilosos como caulinita e matéria orgânica. Estes resultados demonstram que a combinação de razões isotópicas de Zn com outros proxies geoquímicos podem ajudar na identificação de fontes e no rastreio de sua dispersão no contínuo continente-mar. Neste caso, esta abordagem fornece informações mais precisas sobre a dispersão da contaminação de Zn na Baía de Sepetiba, evitando possíveis interpretações erradas sobre as origens do Zn antropogênico em baixos níveis de concentração de Zn.

Palavras-chave: Isótopos de metais; proxies geoquímicos; avaliação de fontes; poluição costeira; Baía de Sepetiba.

ABSTRACT

Sedimentary processes in coastal environments play a key role in the spatial dispersion of metal contaminants, including Zn. Combining Zn stable isotope signatures (δ^{66} Zn) with traditional proxies of sedimentary sources and dispersal and post-depositional processes is a promising approach to understanding Zn anthropogenic dynamics in coastal systems that remains untested. To this end, we coupled geochemical and isotope tools to infer sedimentary contributions on Zn fate and behavior in surface sediments of Sepetiba bay, a tropical lagoon in Rio de Janeiro state chronically contaminated by an old stake of electroplating wastes Zn-Geochimica Brasiliensis 36:e-22008, 2022

Bruno Cunha^{1,2,3} Daniel Ferreira Araújo^{4*} Jeremie Garnier^{3,5} Elton Dantas³ Marly Babinski² Izabel Ruiz² Carlos E. Souto Oliveira⁶ Mauro Geraldes⁷ Davi Rocha⁸ Wilson Machado¹

¹ Universidade Federal Fluminense Programa de Pós-Graduação em Geoquímica Niterói RJ Brazil CEP 24020-141

² Universidade de São Paulo Instituto de Geociências, Cidade Universitária, São Paulo SP Brazil CEP 05508-080

³ Universidade de Brasília Instituto de Geociências Campus Darcy Ribeiro, Brasília DF Brazil CEP 70910-900

⁴Laboratoire de Biogéochimie des Contaminants Métalliques IFREMER, Centre Atlantique F44311 Nantes Cedex 3 France

⁵Laboratoire Mixte International Observatoire des Changements Environnementaux – LMI-OCE Institut de Recherche pour le Développement (IRD) Universidade de Brasília Campus Darcy Ribeiro, Brasília DF Brazil CEP 70910-900

⁶ Universidade de São Paulo Instituto de Astronomia, Geofísica e Ciências Atmosféricas Cidade Universitária, São Paulo SP Brazil CEP 05508-080

 ⁷ Universidade do Estado do Rio de Janeiro Faculdade de Geologia Maracanã Rio de Janeiro RJ Brazil CEP 20550-900

⁸ Serviço Geológico do Estado do Rio de Janeiro Niterói RJ Brazil CEP 24030-060

*Corresponding author: brcunha@usp.br

Copyright

This is an open-access article distributed under the terms of the Creative Commons Attribution License.

enrich. Our results show high variability in δ^{66} Zn values (0.43‰ to 0.89‰) and Zn enrichment factors (1 to 23-fold), evidencing a gradient in mixing sedimentary sources. The biplot δ^{66} Zn versus 1/[Zn] highlights that the Zn isotope variability of most samples fell within a mixing source trend involving natural Zn (+0.29‰, 67 mg.kg⁻¹) and anthropogenic Zn (+0.89‰, 3,440 mg.kg⁻¹), the latter attributed to the Sepetiba bay's historical Zn metallurgical contamination. Based on the isotope mixing model and geochemical proxies (e.g., Ti/Al ratio), we calculated that Zn excess in the Sepetiba Bay varies from 42% to 98%. The Zn enrichment distribution across the bay confirmed anthropogenic Zn dispersal from the Saco de Engenho, mainly controlled by the clock direction water current. Sediments mineralogical composition and correlations between Zn isotope and Al concentrations indicate that the high content of anthropogenic Zn is associated with silt and clay sediment particles composed of gibbsite and clay minerals such as kaolinite and organic matter. Our findings demonstrate that combining Zn isotope ratios with other geochemical proxies may help pinpoint Zn anthropogenic origins and behavior as well as track its dispersion in the land-sea continuum. In this case, this approach provides more accurate results on Zn contamination dispersion in the Sepetiba Bay and avoids possible misleading interpretations concerning anthropogenic Zn origins at low Zn concentration levels.

Keywords: metal isotopes; geochemical proxy; source assessment; coastal pollution; Sepetiba Bay.

1. INTRODUCTION

Zn isotopes have been successfully applied over the past two decades as anthropogenic Zn tracers in diverse environmental contexts, including rivers (SIVRY et al., 2008; CHEN et al., 2008, 2009; PALUMBO-ROE et al., 2010; GUINOISEAU et al., 2018; XIA et al., 2020; ZIMMERMANN et al., 2020; TONHÁ et al., 2021), atmospheric particulates (CLOQUET et al., 2006; GIOIA et al., 2008; BORROK et al., 2010; SOUTO-OLIVEIRA et al., 2018), soils (BIGALKE et al., 2010; FEKIACOVA et al., 2015; AUCOUR et al., 2017; LIU et al., 2020; WANG et al., 2021), and coastal environments (PETIT et al., 2008, 2015; SHIEL et al., 2012, 2013; ARAÚJO et al., 2017a,b,c, 2019, ARAÚJO et al., 2021). More recently, a widespread influence of anthropogenic sources on Zn isotopic signatures in the marine environment has been hypothesized, as indicated for surface waters from the North Atlantic (LEMAITRE et al., 2020).

Zinc isotopes are fractionated during ore refining processes in the metallurgical and electroplating sectors (KAVNER *et al.*, 2008; SIVRY *et al.*, 2008; BORROK *et al.*, 2010; YIN *et al.*, 2016), resulting in distinct isotope compositions between the final metallic products (ZnO; Zn) and solid and effluent byproducts. Zn fingerprints in materials produced in the anthroposphere can differ from those observed in geogenic materials, enabling the tracking and quantification of anthropogenic Zn sources in natural compartments (WIEDERHOLD, 2015). However, identifying mixing source processes requires deconvolving the isotope fractionation between biogeochemical processes and sources.

In coastal systems, multiple natural (e.g., different lithological origins, weathered material. and authigenic minerals) and anthropogenic (e.g., urban, agricultural, port activity, and industrial refuse) sources are mixed along with estuarine plume dispersion, driven by hydrodynamics features (BIANCHI, 2006). These intricate dispersal and postdepositional biogeochemical processes can occur concurrently in sediments and potentially overprint Zn isotope source records (PEEL et al., 2009; ARAÚJO et al., 2017b). Notably, intense primary biological productivity can influence elemental and isotopic partitioning in water column and settling particles the (LITTLE et al., 2016). Thus, a critical assessment of sources and biogeochemical processes is essential for the successful application of Zn isotopes as a geochemical tracer in coastal systems. Previous studies have successfully applied isotopes Zn as

anthropogenic Zn tracers associated with electroplating industry wastes in Sepetiba Bay, an industrialized lagoon located in southeastern Brazil (Fig. 1) (ARAÚJO et al., 2017b, c; TONHÁ et al., 2020). In agreement with other studies performed at Zn smelter-polluted sites (SIVRY et al., 2008; PALUMBO-ROE et al., 2010; JUILLOT et al., 2011; DESAULTY et al., 2020), anthropogenic metallurgical Zn is characterized by a heavy isotope signature, allowing for origin identification through sediment, suspended particulate matter (SPM) and bivalve mollusk sample analyses (ARAÚJO et al., 2017b, c; TONHÁ et al., 2020). Recent studies on sediments and biota from Sepetiba bay have characterized the Zn speciation in surficial sediment and biota contamination (TONHÁ et al., 2020; KUTTER et al., 2021). These previous studies focus on Zn contamination and behavior in sediment, considering a period later than the waste encapsulation. However, the anthropogenic Zn liberation from waste, its remobilization from

2. METHODS

2.1 STUDY AREA

The Sepetiba Bay is a 520 km2 semienclosed estuary in the Rio de Janeiro State (southeastern Brazil, Fig. 1). The geology of the Sepetiba watershed is composed of Quaternary sediments and igneous granite-gneisses rocks (RONCARATI; CARELLI, 2012). The sediments in the bay are governed by fluvial (terrigenous), marine, and biogenic sources (BARCELLOS et al., 1997). The clock-wise direction of the surficial current in the bay led to the dispersion of fine clay and/or organic-rich terrigenous sediments in the eastern part of the bay, and the coarsest in the western part opened Ocean (RONCARATI; Atlantic to the CARELLI, 2012). Accordingly, the geochemical composition of sediments from the Sepetiba bay varies according to the different bay zones, presenting sandy particles in the bay entrance and navigational channel (west region) and clayed organic-rich material in the shallow sheltered zones.

The watershed hosts a large population (esti-

contaminated sediments, and distribution along the bay before this period remain less characterized.

This study analyzes Zn isotopes and geochemical compositions of a new gridsampling of surface sediments samples distributed across Sepetiba bay which were collected in 2008, therefore, before tailing encapsulation. Thus, this sampling provides a screenshot of Zn contamination baseline previous to local actions intended to reduce wastes releasing into the bay. This study seeks to improve spatial Zn contamination dispersion constraints by combining Zn isotope ratios with mineralogy and chemical proxies of geochemical sediment sources. The findings will provide a more accurate assessment of anthropogenic Zn dispersion in a coastal system. Indeed, tracking metallic contaminants using metal stable isotope compositions without considering mineralogy, hydrodynamic and sediment variation along the transport can lead to misleading interpretations.

mated to contain 1.4 million inhabitants) in the Metropolitan Rio de Janeiro area, a huge industrial park, and voluminous harbor activity (ore shipping, metallurgy, rubbery, and food, among others). It also included the largest steel industry complex in Brazil. A Zn electroplating plant (Mercantile Company Inga) operated close to the northeastern shore of Sepetiba Bay (Fig. 1, old electroplating facility). From the 1960s to the end of the 1990s, 600,000 tons of byproducts generated by this electroplating plant were stored in the open-air, covering an area of 40,000 m² (BARCELLOS *et al.*, 1991).

To avoid frequent waste leaching episodes, a dam was built in 1984. Nevertheless, several events of dam collapses (in 1996, 2003, and 2006), with effluents and mud leakage into the surrounding mangroves of *Saco do Engenho* and Sepetiba Bay, have been registered. Finally, the byproduct tailing was encapsulated *in situ* in 2012 to prevent material leaching and further contamination.

2.2 SAMPLING, ELEMENTAL AND MINERALOGICAL ANALYSES

Sepetiba Bay surface sediments (~ 0-10 cm depth) were sampled from 21 stations using a Van Veen grab in 2008 before metallurgical waste encapsulation (Fig. 1). Sample preparation for major elements and total zinc concentration analyses were performed at the Geological Sample Preparation Laboratory at the Rio de Janeiro State University (LGPA-UERJ). Sediments samples were (i) sieved (<200 mesh, i.e., 74 µm), (ii) dried, (iii) weighed (0.25 g) before (iv) total acid digestion (HF+HCl+HNO₃) using a Teflon vial in a hot plate. The determination of total zinc concentrations and other selected elements (Al, Ca, Fe, Ti, and Mn) (HR-ICP-MS) was

2.3. ZINC ISOTOPE ANALYSES

Zn isotope analyses were performed in 2016 at the Geodynamics and Environmental Studies Laboratory at Brasilia University (UnB). Further details concerning analytical procedures and sample preparation can be found elsewhere (ARAÚJO *et al.*, 2017a). Briefly, 100 mg of sieved sediment samples were digested in Savillex® beakers applying multiple-step acid digestion using HCl, HF, and performed at ActLabs Canada (ISO 17025). The Zn concentrations for the vessel blanks, reagent blank, and procedural blanks were lower than the analysis limit of detection (LD) (LD = 0.025 μ g L⁻¹). The mineralogical composition of sediments was determined, at the XRD laboratory of the University of Brasilia, by x-ray diffraction (XRD) (Rigaku®, Ultima IV diffractometer, JPN) using Ni-filtered Cu-K\alpha radiation and a graphite monochromator. The XRD patterns were recorded from 2 θ values of 2° to 80° with a scanning speed of 2°/min. The XRD patterns interpretation was performed using the software Jade®.

HNO₃ on a hot plate (TONHÁ *et al.*, 2020). The sample batch also included certified material (BHVO-2) and blanks. The elution protocol followed an adaptation of the steps described by Maréchal *et al.* (1999). Prior to the isotope analysis, 2 μ g aliquots of Zn were purified through an ion-exchange chromatographic column packed with AG-MP1 resin and eluted with HNO₃. Zinc isotope ratios were

determined using a Thermo Finnigan Neptune plus Multicollector Inductively Coupled Plasma Mass Spectrometry at the Center for Research in Geochronology and Isotopic Geochemistry of the University of São Paulo (CPGeo, USP). Samples were doped with Cu NIST SRM 976 at a 1:1 Cu/Zn ratio and introduced into the spectrometer through a 0.05 M HNO₃ medium using an SIS spray chamber. Raw ratios were corrected for instrumental fractionation (mass

 $\delta^{66} Zn_{JMC}(\%_0) = \left(\frac{({}^{66}Zn/{}^{64}Zn)_{sample}}{({}^{(66}Zn/{}^{64}Zn)_{JMC} - Lyon} - 1\right) X1000$ (Eq. 1)

Two different BHVO-2 reference material aliquots were run in every batch sample through digestion and chromatographic steps, yielding a δ^{66} Zn_{JMC} average of +0.29 ± 0.05‰ (2s, n=2). The δ^{66} Zn_{IMC} average for the certified isotope material IRMM (Institute for Reference Materials and Measurements) corresponded to $+0.32 \pm 0.01\%$ (2s, n=2). Both certified materials agree with the long-term concentrations obtained by our method by MC-ICP-MS from different laboratories compiled by Moynier *et al.* (2017) (+0.30 \pm 0.01‰, 2s,

bias), combining the standard bracketing technique and external normalization with the Cu-dopant applying the exponential law (ARAÚJO *et al.*, 2017a). Samples and certified materials used for analytical control were analyzed in a single analytical session comprising two successive runs. The final Zn isotope data reported in this study are expressed relative to the Johnson Matthey Company 3-0749-L (JMC3-0749-L) as follows:

for IRMM and $+0.28 \pm 0.07\%$, 2s, n=4 for BHVO-2). The external reproducibility of our method based on a long-term sample and certified material measurements corresponds to 0.04% (2s, n = 42). Considering previous measurements performed in the same laboratories over the last five years according to the identical analytical sequences (ARAÚJO *et al.*, 2017a, b, c; SOUTO-OLIVEIRA *et al.*, 2019; TONHÁ *et al.*, 2020), the present δ^{66} Zn_{JMC} concentrations are indistinguishable.

2.4. GEOCHEMICAL PROXIES AND ENRICHMENT FACTORS

Manganese and Fe distributions are also associated with diagenetic redox cycling involved in microbial metabolism and carboniron-sulfur interactions (ARAÚJO et al., 2017d; GUEIROS et al., 2003). The participation of these elements in redox processes is supported by the frequent occurrence of ankerite and pyrite in Sepetiba Bay sediments (ARAÚJO et al., 2017d). Furthermore, in this case, Al is mainly associated with aluminosilicate materials from terrestrial sources, while Ca is mainly related to carbonates from biogenic marine or/and authigenic sources

$$EF = \left(\frac{(M/Ti)_{Sample}}{(M/Ti)_{terrigenous \ background}}\right)$$

Where (M) is the concentration of the metal of interest and (Ti) comprises titanium concentrations, a conservative reference element with no significant anthropogenic source. The Upper Continental Crust (UCC) composition and local sediment background $\delta^{66}Zn_{JMC}$ signatures reported for Sepetiba bay by Araújo *et al.* (2017b) were used for these

(BARCELLOS *et al.*, 1997; ARAÚJO *et al.*, 2017d). Based on previous studies carried out at Sepetiba Bay, Mn and Fe were adopted as proxies for redox processes, whereas Al and Ca were used to evaluate terrigenous and marine provenances, respectively.

The trace element enrichment factor (EF) was used to compute anthropogenic influences, adopting the combined physical (sieving) and geochemical (ratio for a conservative reference element) normalization approach (Kersten and Smedes, 2002). The Enrichment Factor was calculated as follows:

(Eq. 2)

calculations (67 mg kg⁻¹ and δ^{66} Zn_{JMC} =0.29‰ for Zn and 8.1 wt.%, 0.38 wt.% for Al and Ti respectively). A Principal Component Analysis (PCA) was performed to identify possible associations between δ^{66} Zn_{JMC}, Zn, Cd, Mn, Fe, Al, and Ti. Statistical treatments were performed using Statsoft software (Statistica, release 8.0).

3. RESULTS AND DISCUSSION

Sediments were grey, with grain size ranging from clay to fine sand, composed of quartz, gibbsite, clay minerals (kaolinite and traces of illite), and a small proportion of pyrite and/or ankerite. It has also been observed calcite in sediments from the west part of the bay (Fig. 2). Halite was also observed and interpreted as crystalized mineral during sediment drying. In a previous study, framboidal pyrite was determined by scanning electron microscopy (SEM) (TONHÁ *et al.*, 2020). The Al concentration in sediment ranged from 3.60 to 8.92 % wt., Ca from 0.27 to 7.72

% wt., and Ti from 0.32 to 0.84 % wt (Table 1). The organic matter concentration of Sepetiba Bay sediments has been quantified in a previous study and ranges from 3 to 18.6% (ARAÚJO *et al.*, 2017d). The PCA of the sediment dataset yields two principal components accounting for 72% of the variability (Fig. 3A e 3B). The PCA analysis separated three main clusters, interpreted to be related to the origin of sediments, with marine sediment (Ca and Mn cluster) and terrigenous one (Al, Fe, and Ti cluster), and anthropogenic contamination (Zn, Cd, and δ^{66} Zn_J cluster).

Figure 2

XRD diffractograms of sediments samples 11, 8, 12 and 18, showing characteristics peaks (qtz: quartz, kl: kaolinite, gbs; gibbsite, ill: illite, cc: calcite, ank: ankerite, py: pyrite and hl: halite crystallized during drying).

3.1 SPATIAL Zn CONCENTRATION AND ISOTOPIC SIGNATURE TRENDS

The Zn concentrations, isotopic compositions, and Zn enrichment factors are presented in Table 1. In contrast to major elements, Zn concentrations of the Sepetiba Bay sediments are much greater than the natural background. Zn concentrations ranged from 145 (sample 20) to 3,440 mg kg⁻¹ (sample 8) from the southwest part of the bay to the Saco of Engenho mangrove, located in the north bay area and indicated by previous studies as the source of Zn-contaminated sediments (BARCELLOS *et al.*, 1991; BARCELLOS; LACERDA 1994; ARAÚJO *et al.*, 2017b). Previous studies show that the high Zn EF of Sepetiba Bay sediments, ranging from 2 to 23, highlights non-natural Zn origin in these samples.

Figure 3 PCA analysis of variables in sediments from Sepetiba bay

Sample	Fe	Al	Ca	Ti	Mn	Cd	Zn	Ant. Zn	δ ⁶⁶ Zn _{JMC}
Id.			%			mg kg-1		%	‰
1	4.61	8.00	1.99	0.61	616	1.8	436	77	0.64
2	4.61	8.23	0.61	0.64	531	3.4	946	90	0.70
3	3.64	3.97	6.01	0.28	1,230	0.7	240	81	0.57
4	4.66	7.62	0.64	0.68	483	2.6	750	86	0.72
5	4.02	7.35	0.52	0.57	386	2.5	724	88	0.66
6	4.23	7.69	0.68	0.54	401	2.1	574	85	0.54
7	4.82	8.01	0.75	0.65	494	3.3	715	85	0.54
8	6.45	6.62	1.99	0.84	693	23.0	3,440	98	0.89
9	3.77	3.98	2.86	0.60	468	1.1	179	42	0.48
10	5.28	8.25	0.57	0.58	397	4.0	783	88	0.65
11	5.27	8.92	0.35	0.64	461	2.1	676	85	0.64
12	3.68	6.78	0.56	0.49	841	2.0	574	86	0.65
13	3.67	6.52	0.41	0.49	498	2.6	823	91	0.71
14	3.51	5.81	0.27	0.44	398	3.5	1,100	95	0.83
15	4.20	7.16	0.27	0.50	430	1.5	574	86	0.69
16	3.77	6.28	0.31	0.50	486	2.8	721	89	0.70
17	3.86	6.48	0.66	0.54	502	1.9	405	78	0.55
18	2.26	3.60	10.6	0.32	891	0.6	153	64	0.56
19	4.45	5.45	2.18	0.64	587	0.7	222	50	0.55
20	3.51	3.69	2.34	0.40	508	0.6	145	52	0.43
21	3.62	4.33	7.72	0.49	440	0.5	156	45	0.51

Table 1- Major element and Zn concentration (Fe, Ca, Al and Ti in %; Mn, Cd, and Zn in mg kg⁻¹), Calculated Zinc anthropogenetic (Ant. Zn in %) based on normalized-Zn concentration binary mixing model proposed and Zinc isotopic composition (δ^{66} Zn wc in %)

The δ^{66} Zn_{JMC} values determined on sediments (+0.43 to +0.89‰; Table 1) are within the range reported in previous studies concerning Sepetiba Bay sediments (+0.20 to +1.15%; ARAÚJO et al., 2017b; TONHÁ et al., 2020). These studies showed that Znenriched sediment particles coming from the hot spot zone display high positive δ^{66} Zn_{JMC} values. Moreover, these δ^{66} Zn_{JMC} values agree previously analyzed anthropogenic with materials, such as Zn smelter tailings (+0.18 to +1.49‰; SIVRY et al. 2008), smelter effluents (+0.41 to +0.51%; SHIEL et al., 2010), and sediment's contaminated by metallurgical activities from France (+0.75 to +1.36‰: SIVRY et al., 2008), China (+0.40 to +0.67‰; ZHANG et al., 2018) and Sepetiba Bay (+0.20) to +1.03‰; ARAÚJO et al., 2017b; TONHÁ et al., 2020). All studies pointed out heavy δ^{66} Zn_{JMC} values indicating input of solid metallurgical byproducts.

A further study conducted in the Saco do Engenho surrounding mangrove shows that part of the anthropogenic metallurgical Zn was redistributed from the exchangeable/carbonate fraction in the waste to the mangrove sediment. Then, this contaminated sediment with heavy $\delta^{66/64}$ Zn values was exported and dispersed into the Sepetiba Bay (TONHÁ *et al.*, 2020). Accordingly, the higher Zn EF evidenced the region near the former electroplating plant as the most enriched in anthropogenic Zn (with a Zn-EF larger than 23 for sample 8). In contrast, the lowest concentrations, varying from 3.7 to 4.6 for samples 9, 18, 19, 20, and 2, were observed in the west area of the bay. Nonetheless, medium Zn-EF values were observed close to Saco de Engenho, and oppositely high Zn-EF values were observed far away from this source point.

A $\delta^{66}Zn_{JMC}$ versus 1/[Zn] plot (Fig. 4) supports a general mixing trend between two main end-members: a geogenic, encompassing weathered detrital products (e.g., clays); and an anthropogenic source, representing the Zn released from the legacy electroplating waste (ARAÚJO et al., 2017b; TONHÁ et al., 2020). Exceptionally, a group of few samples (3, 9, 18, 19, 20, and 21) exhibited moderate-heavy δ^{66} Zn values (+0.54%) to +0.57%) and relatively lower Zn concentrations (from 179 to 240 mg kg⁻¹). These findings argue for a third unknown source and/or biogeochemical processes affecting Zn concentrations and/or Zn isotope compositions during the dispersion of contaminated sediment. According to the higher concentration of Ca (ranging from 2,18 to 10,6 % wt.) and the presence of calcite in this zone, we cannot exclude a small contribution of Zncarbonate with heavier Zn isotopic concentration as reported by Pichat et al. (2003).

Plot presenting the δ^{66} Zn_{JMC} versus 1/[Zn] concentrations from this study. Based on previous studies (ARAÚJO *et al.*, 2017b, and TONHÁ *et al.*, 2020), the green and red areas represent the natural geogenic isotope range (y-axis) and local anthropogenic emissions, respectively. The double arrow along axe X represents the expected Zn concentrations for sediment sources with terrigenous and marine origins, respectively.

3.2 MODELING SPATIAL DISPERSION OF THE ZN CONTAMINATION

The distribution of geochemical proxies for redox processes (Mn, Fe) and sediment source mixing (Al, Ca) is presented in Table 1 and Figure 4. Higher calcium concentrations, up to 2 wt.%, were observed in samples located in the southwestern portion of the bay (samples 9, 18, 19, 20, and 21), closer to the main ocean connection, and in one sample in the northern portion of the bay (sample 3). Manganese is higher in samples 12 and 18, with a peak concentration of 1,230 mg kg⁻¹ in sample 3. Pyrite and ankerite, a Ca-Fe-Mn carbonate, have been observed in Sepetiba bay sediments by XRD analysis (Fig. 2). The presence of framboidal pyrite and Mn (II) carbonate mineral in Sepetiba surficial sediments highlights reducing conditions associated with early diagenesis processes. Moreover, it suggests that the redox cycling induces remobilization and redistribution of Mn and Fe from anoxic to oxygenated sediments, where Mn oxide accumulation in the uppermost layers is favored, as reported previously (LACERDA et al., 1999; GUEIROS et al., 2003).

However, the Zn concentrations were not

correlated with Mn and Fe ($R^2 < 0.26$), showing that Mn-Fe oxyhydroxides were not the main Zn-host phases. A moderate positive correlation between Al (a proxy for terrigenous sediment source) and Zn (R2 = 0.67) suggests Zn associations with clay minerals previously reported for this bay (TONHÁ et al., 2020). This moderate correlation agrees with the composition of clay sediment contaminated by Zn liberated from the legacy smelter waste, i.e., the end-member used in the mixing model. In addition, a stronger negative correlation ($R^2 =$ 0.59) between Zn and Ca, coupled with a positive one between Zn and Al, suggests the dispersion effect of Zn-contaminated sediment in the Sepetiba Bay with a larger oceanic contribution in the western part (richer in carbonate) and oppositely terrigenous sediment in the eastern part (rich in clay). These disregarded correlations sample 8, corresponding to the electroplating source signature. This sediment with a very large Zn concentration represents an outlier considering general sediment correlation trends observed throughout the bay.

Figure 5

Plot presenting the Zn versus Mn (black circle), Fe (white circle), Al (black circle), and Ca (white circle) concentrations from this study (except sample 8).

Sedimentary environments in land-ocean transition typically involve mixing terrigenous, biogenic, and authigenic marine carbonates (BARCELLOS *et al.*, 1997). In Sepetiba Bay, the mixing of sediment material from several origins is likely to affect trace metal concentrations and behavior, as evidenced by the cited studies and observed Zn correlations with Ca and Al. In order to deconvolve potential biogeochemical processes during the dispersion of terrestrial clay sediments contaminated by Zn liberated from the legacy smelter waste, a normalized-Zn concentration binary mixing model analogous to that developed by Chen *et al.* (2009) was applied.

Although Chen *et al.* (2009) initially used more than one element normalized to Zn (such as Al, Cr, Ni, Ba, and Th), generating convergent results, most of these normalized trace elements used in this study (Cr, Ni, and Ba) can have concentration affected by pollution in the Sepetiba Bay area. Titanium was, therefore, chosen to represent natural conservative elements in this coastal system, as indicated in the discussions above. Ti/Zn ratios derived from Table 1 data were applied in anthropogenic source contribution calculations, adopting the following binary mixing equations (CHEN *et al.*, 2009):

$$\delta^{66}Zn_{sample} = \delta^{66}Zn_{nat} *x_{nat} + \delta^{66}Zn_{anth} *x_{anth}$$

$$\frac{Ti}{Zn}_{sample} = (\frac{Ti}{Zn})nat *x_{nat} + (\frac{Ti}{Zn})anth *x_{anth}$$
(Eq. 3)
Satisfying that $1 = x_{nat} + x_{anth}$.

The Zn amounts from the natural and anthropogenic sources are represented by x_{nat} and x_{anth} , respectively. Sample 8 was chosen to represent the anthropogenic end-member, as it was located in the old electroplating plant region and presented similar Zn concentration and δ^{66} Zn values previously reported for this region (3,440 mg kg⁻¹ of Zn and δ^{66} Zn_{JMC} = 0.89‰) (ARAÚJO *et al.*, 2017b; TONHÁ *et al.*, 2020). Oppositely, UCC sediment with 67 mg kg⁻¹ of Zn (RUDNICK; GAO, 2014) and a δ^{66} Zn_{JMC} value of 0.29‰ from watershed background sediment (ARAÚJO *et al.*, 2017b) has been considered as pristine Zn sample in the region.

3.3. DISPERSION OF ZN-CONTAMINATED SEDIMENT IN THE SEPETIBA BAY

The Zn anthropogenic proportion value has been plotted on granulometric and sediments Carbon concentration map (RIBEIRO *et al.*, 2013) (Fig. 7A and 7B). As expected, the higher Zn anthropogenic concentrations were observed in areas rich in clayed and organic-rich sediment. For example, the contribution from the electroplating byproduct legacy was high, reaching 95%, even

The relative contribution from the major anthropogenic source ranged from 42% to 98% outside the electroplating plant hot spot area (Figs. 6 and 7). Excluding sample 8, the correlation between Zn anthropogenic proportion and Al-EF and Zn-EF values are notable ($R^2 = 0.83$ and 0.86, respectively) (Fig. 5). As already shown in Zn contaminated area, or Zn-layered Zn-phyllosilicate double hydroxide (Zn-LDH) may be quantitatively relevant in slightly acidic to neutral soils contaminated by mining and smelting emissions (MANCEAU et al., 2000; TRIVEDI; AXE 2000; JUILLOT et al., 2003; VOEGELIN et al., 2005; GOU et al., 2018).

far from the point source (samples 12 to 17; Fig. 5 and 6a and 6b), showing the Zn contamination dispersion along the bay. This feature can be partly explained by the bay's hydrodynamics, resulting in anthropogenic Zn predominantly transported by a clockwise circulation. Sediments encountered in this area were fine clayed organic-rich sediment (RONCARATI; CARELLI, 2012).

Figure 6

Plot presenting the AI-EF and Zn-EF versus calculated relative contributions from the anthropogenic Zn from the study area, correlation calculated on all samples except sample 8 considered as anthropogenic end-member in this study (red diamond).

Calculated relative contributions from the anthropogenic Zn plotted in fine-grained sediments (A) and Organic carbon distribution maps (B) (modified from Ribeiro *et al.* 2013). The purple polygon rerpesents Saco do Engenho.

Following the main clockwise direction of coastal circulation, the anthropogenic Znenriched particles released from the SE mangrove are mixed with a large terrigenous sediment load delivered by the main local river, the São Francisco channel (SF), located in the northern bay area (Figs. 1 and 7A). During this mixing, terrigenous material rich in claymineral and (Mn-Fe-Al) oxides may also contribute with metals to the bay, including Zn derived from diffuse source emissions along the land-sea continuum (TONHÁ *et al.*, 2021). This river exhibits an annual discharge of 6.5 x 10⁹ m³ (MOLISANI *et al.*, 2004), with a δ^{66} Zn signature of +0.30 ‰ and Zn concentration of about 85 mg kg⁻¹ in suspended particulate matter (TONHÁ *et al.*, 2021). Additionally, channels such as Cabuçu-Piraquê and Globo Rivers, draining urban areas, are possible sources of metal contaminants associated with untreated sewage effluents discharged directly in the watershed (ALVES-NETO *et al.*, 2014). The SE mangrove and SF and canals sediments are free of carbonates and dominated by organic matter, Al oxides (gibbsite), and clay minerals (kaolinite and traces of illite) (TONHÁ *et al.*, 2020 and 2021).

Consequently, sources of natural (i.e., geogenic) and anthropogenic Zn (i.e., electroplating wastes) contribute to the isotope compositions and elemental Zn contents of SPM transported into the bay. Our results suggest that the anthropogenic Zn initially present in particles from SE mangrove (hot spot zone) is re-allocated in different mineralogical phases after mixing with the terrigenous sediment plume. The sediment mixture and Zn re-allocation drive to Zn enrichment of terrigenous sediments from SF and other canals, rich in kaolinite, gibbsite, and organic matter. Concurrently, as sediments are transported

4. CONCLUSIONS

Our findings indicate that applying Zn isotopes combined with geochemical and mineralogical characterizations is helpful to better constrain the sedimentary controls on the dispersion of anthropogenic Zn in coastal sediments. Combining Zn isotope tools with traditional proxies allowed tracing the anthropogenic Zn behavior and its spatial dispersion composed in the land-sea continuum. As demonstrated here, clay-rich marine sediment particles are the main carriers of anthropogenic Zn from the Saco of Engenho, i.e., the mangrove surrounding the legacy electroplating wastes, to the inner bay. Following the major circulation pattern of the bay in the clockwise direction, the Zn-enriched clav particles emitted from this hotspot are Zn-depleted sediments mixed with of terrigenous sources brought by rivers. As mixing proceeds following the circulation pattern toward the eastern part of the bay, major

5. ACKNOWLEDGMENTS

This work was sponsored by FAPERJ Grant E-26/100.662/2009 to MCG and partly funded by the LMI-OCE and CNPq 400029/2015-4, 420697/2018-7. Jeremie Garnier was supported by CNPq grant 310750/2014-8 and

toward the open sea, they are mixed with marine sediments enriched in calcium and manganese.

that sediment Considering dredging activities occurred periodically in the eastern without regulation in the part past (WASSERMAN et al., 2013), anthropogenic Zn spatial variability in the eastern part may also be affected by irregular dumping and dispersion of contaminated dredged sediments. Besides possible natural sediment resuspension events (BARCELLOS et al., 1997), metalcontaminated sediment remobilization due to dredging operations, causing contamination plume dispersion, has also been evidenced for Sepetiba Bay (WASSERMAN et al., 2016). However, the present Zn contaminated sediment dispersion model agrees with such activities. dredging through large Zn concentration observed associated with fine sediments and sometimes far away from the main sources, the Saco do Engenho mangrove.

marine sediment contributions result in further Zn concentration dilutions, but without effect on Zn isotope compositions because of very low Zn concentration in carbonate. The present work confirms the conservative isotopic behavior of Zn in the mixing processes throughout a coastal system, i.e., transport, deposition, and post-depositional processes. The relative geographical contributions of the different continental and marine sediments resulting from the sedimentary mixing dynamics reflect a conservative mixing isotope process involving natural and anthropogenic Zn end-members. These findings reaffirm that considering sedimentary dynamics, geochemical proxies, and normalizing- concentration approaches improve isotope tracking and help may prevent misleading interpretations concerning metal sources contributions and related attenuation processes.

302722/2018-1. The authors would like to thank research grants from CAPES (BC) and CNPq (MG, MB, JG, and WM) and support from CAPES (financial code 001).

6. DECLARATIONS

The authors and technicians declare that they have no competing interests. No human

7. REFERENCES

- ALVES-NETO, J.; BARBOSA, A.; MEDEIROS, M.; CASARTELLI, E.: GUARINO, A., MERÇON, F. Transposição de Cádmio e Zinco da Baía de Sepetiba, e sua Deposição em Sedimentos do Estuário do Rio Cabuçu-Piraquê (Rio de Janeiro, Brasil). Revista Virtual de Química 6,1295-1315, 2014. https://doi.org/ 10.5935/1984-6835.20140085
- ARAÚJO, D.; BOAVENTURA, G.; VIERS, J.; MULHOLLAND, D.: WEISS. D.: ARAÚJO, D.; LIMA, B.; RUIZ, I.; BABINSKI, MACHADO, W.; M.: DANTAS, E. Ion exchange chromatography and mass bias correction for accurate and precise Zn isotope ratio measurements in environmental reference materials by MC-ICP-MS. Journal of the Brazilian Chemical Society 28, 225-235, 2017a. https://doi.org/10.5935/0103-5053.20160167
- ARAÚJO, D. F.; BOAVENTURA, G. R.; MACHADO, W.; VIERS, J.; WEISS, D.; PATCHINEELAM, S.; RUIZ, I.; RODRIGUES, A.; BABINSKI, M.; DANTAS, E. Tracing of anthropogenic zinc sources in coastal environments using stable isotope composition. Chemical Geology 449, 226-235, 2017b.

https://doi.org/10.1016/j.chemgeo.2016.12. 004

ARAÚJO, D. F.; MACHADO, W.; WEISS, D.;
MULHOLLAND, D. S.; BOAVENTURA,
G. R.; VIERS, J.; GARNIER. J.; DANTAS,
E.; BABINSKI, M. A critical examination of the possible application of zinc stable isotope ratios in bivalve mollusks and suspended particulate matter to trace zinc pollution in a tropical estuary.
Environmental Pollution 226, 41–47, 2017c.

https://doi.org/10.1016/j.envpol.2017.04.011

ARAUJO, D.; PERES, L.; YEPEZ, S.; MULLHOLLAND, D.; MACHADO, W.; TONHA, M.; GARNIER, J. Assessing maninduced environmental changes in the Sepetiba Bay (Southeastern Brazil) with geochemical and satellite data. Comptes participants and/or animals were involved in this study.

Rendus Geoscience 349, 290-298, 2017d.. https://doi.org/10.1016/j.crte.2017.09.007

ARAÚJO, D.; PONZEVERA, E.; BRIANT, N.;
KNOERY, J.; SIREAU, T.; MOJTAHID,
M.; METZGER, E.; BRANCH-PAPA, C.
Assessment of metal contamination evolution in the Loire estuary using Cu and Zn stable isotopes and geochemical data in sediments. Marine Pollution Bulletin 143, 12-23, 2019.

https://doi.org/10.1016/j.marpolbul.2019.04 .034

ARAÚJO, D.F.; PONZEVERA, E.; WEISS, D.; KNOERY, J;, BRIANT, N;, YEPEZ, S.; BRUZAC, S.; SIREAU, T;, BRANCH-PAPA, C. Application of Zn Isotope Compositions in Oysters to Monitor and Quantify Anthropogenic Zn Bioaccumulation in Marine Environments over Four Decades: A "Mussel Watch Program" Upgrade. Environmental Science & Technology Water 4, 1035-1046, 2021.

https://doi.org/10.1021/acsestwater.1c00010

AUCOUR, A.; BEDEL, J.; QUEYRON, M.; THOLE, R.; LAMBOUX, A.; SARRET, G.
Zn speciation and stable isotope fractionation in a contaminated urban wetland soil - Typha latifolia system.
Environmental Science & Technology 51, 8350-8358, 2017

https://doi.org/10.1021/acs.est.6b02734

- BARCELLOS, C.; REZENDE; C.E.; PFEIFFER, W.C. Zn and cd Production and Pollution in a Brazilian Coastal Region. **Marine Pollution Bulletin** 22, 558-561, 1991.
- BARCELLOS, C.; LACERDA, L.; CERADINI, S. Sediment origin and budget in Sepetiba bay (Brazil) – an approach based on multielemental analysis. **Environmental Geology** 32, 203-209, 1997
- BARCELLOS, C.; LACERDA, L.D. Cadmium and zinc source assessment in the Sepetiba Bay and basin region. **Environmental Monitoring and Assessment** 29, 183–199, 1994

- BIANCHI T. S. **Biogeochemistry of Estuaries**. Oxford University Press. New York. 2006. 720 pp. ISBN-13: 978-0195160826
- BIGALKE, M.; WEYER, S.; KOBZA, J.; WILCKE, W. Stable Cu and Zn isotope ratios as tracers of sources and transport of Cu and Zn in contaminated soil. Geochimica et Cosmochimica Acta 74, 6801-6813, 2010.

https://doi.org/10.1016/j.gca.2010.08.044

BORROK, D.; GIERÉ, R.; REN, M.; LANDA,
E. Zinc isotopic composition of particulate matter generated during the combustion of coal and coal + tire-derived fuels.
Environmental Science & Technology 44, 9219–9224, 2010.

https://doi.org/10.1021/es102439g

- CHEN, J.; GAILLARDET, J.; LOUVAT, P. Zinc isotopes in the Seine River waters, France: a probe of anthropogenic contamination. Environmental Science & Technology 42, 6494–6501, 2008 https://doi.org/10.1021/es800725z
- CHEN, J.; GAILLARDET, J.; LOUVAT, P.; HUON, S. Zn isotopes in the suspended load of the Seine River, France: Isotopic variations and source determination. **Geochimica et Cosmochimica Acta** 73, 4060-4076, 2009.

https://doi.org/10.1016/j.gca.2009.04.017

CLOQUET, C.; CARIGNAN, J.; LIBOUREL, G. Isotopic composition of Zn and Pb atmospheric deposition in a urba/periurban area of Northeastern France. Environmental Science & Technology 40, 6594-6600, 2006.

https://doi.org/10.1021/es0609654

- FEKIACOVA, Z.; COMU, S.; PICHAT, S. Tracing contamination sources in soils with Cu and Zn isotopic ratios. Science of The Total Environment 517, 96-105, 2015 https://doi.org/ 10.1016/j.scitotenv.2015.02. 046
- GIOIA, S. M. C. L.; WEISS, D.; COLES, B.; BABINSKY, M.; ARNOLD, T. Accurate and precise zinc isotope ratio measurements in aerosols. **Analytical Chemistry** 80, 9776-9780, 2008.

https://doi.org/10.1021/ac8019587

GUEIROS, B.; MACHADO, W.; LISBOA FILHO, S. D.; LACERDA, L. D. Manganese behavior at the sediment-water interface in a mangrove dominated area in Sepetiba bay, SE Brazil. Journal of Coastal Research 19, 550-559, 2003.

- GUINOISEAU, D.; BOUCHEZ, J.; GÉLABERT, A.; LOUVAT, P.; MOREIRA-TURCQ, P.; FILIZOLA, N.; BENEDETTI, M. Fate of particulate copper and zinc isotopes at the Solimões-Negro River confluence, Amazon Basin, Brazil. **Chemical Geology** 489, 1-15, 2018 https://doi.org/10.1016/j.chemgeo.2018.05. 004
- JUILLOT, F.; MORIN, G.; ILDEFONSE, P.; Т.; TRAINOR, BENEDETTI, M.: GALOISY, L.; CALAS, G.; BROWN, G. Occurrence of Zn/Al hydrotalcite in smelterimpacted soils from northern France: Evidence from EXAFS spectroscopy and chemical American extractions. Mineralogist 88, 509-526, 2003. https://doi.org/10.2138/am-2003-0405
- JUILLOT, F.; MARÉCHAL, C.; MORIN, G.;
 JOUVIN, D.; CACALY, S.; TELOUK, P.;
 BENEDETTI, M. F.; ILDEFONSE, P.;
 SUTTON, S.; GUYOT, F.; BROWN JR, G.
 E. Contrasting isotopic signatures between anthropogenic and geogenic Zn and evidence for post-depositional fractionation processes in smelter-impacted soils from Northern France. Geochimica et Cosmochimica Acta 75. 2295-2308, 2011. https://doi.org/10.1016/j.gca.2011.02.004
- KAVNER A.; JOHN, S.G.; SASS, S.; BOYLE,
 E.A. Redox-driven stable isotope fractionation in transition metals:
 Application to Zn electroplating.
 Geochimica et Cosmochimica Acta 72, 1731-1741, 2008.

https://doi.org/10.1016/j.gca.2008.01.023

KERSTEN, M.; SMEDES, F. Normalization procedures for sediment contaminants in spatial and temporal trend monitoring.
Journal of Environmental Monitoring 4, 109-115, 2002.

https://doi.org/10.1039/B108102K

- LACERDA, L.; PFEIFFER, W.; FISZMAN, M.; Heavy metal distribution, availability and fate in Sepetiba bay, SE Brazil. **The Science of the Total Environment** 65, 163-173, 1987. https://doi.org/10.1016/0048-9697(87)90169-0
- LACERDA, L.D.; RIBEIRO JR, M.; GUEIROS, B. Manganese dynamics in a mangrove mud flat tidal creek in SE Brazil.
 Mangrove and Salt Marshes 3, 105-115, 1999.

https://doi.org/10.1023/A:1009992418964

LEMAITRE, N.; DE SOUZA, G.F.; ARCHER, C., WANG, R.; PLANQUETTE, H.; SARTHOU, G.; VANCE, D. Pervasive sources of isotopically light zinc in the North Atlantic Ocean. **Earth Planet. Sci. Lett**. 539, 116-126, 2020.

https://doi.org/10.1016/j.epsl.2020.116216

- LITTLE, S.; VANCE, D.; MCMANUS, J.; SEVERMANN, S. Key role of continental margin sediments in the oceanic mass balance of Zn and Zn isotopes. **Geology** 44, 207-210, 2016 https://doi.org/10.1130/G37493.1
- LIU, Y.; GAO, T.; XIA, Y.; WANG, Z.; LIU, C.; LI, S.; WU, Q.; LI, S.; WU, Q.; QI, M.; LV, Y. Using Zn isotopes to trace Zn sources and migration pathways in paddy soils around mining area. **Environmental Pollution** 267, 115616, 2020. https://doi.org/10.1016/j.envpol.2020.1156

16

MANCEAU, A.; LANSON, B.; SCHLEGEL, M.L.; HARGE, J.; MUSSO, M.; EYBERT-BERARD, L.; HAZEMANN, J. L.; CHATEIGNER, D.; LAMBLE, G.M. Quantitative Zn speciation in smeltercontaminated soils by EXAFS spectroscopy.
American Journal of Science 300, 289-343, 2000.

https://doi.org/10.2475/ajs.300.4.289

- MARÉCHAL, C.N.; TÉLOUK, P.;
 ALBARÈDE, F. Precise analysis of Copper and Zinc isotopic compositions by plasmasource mass spectrometry. Chemical Geology 156: 251–273, 1999.
 https://doi.org/10.1016/S0009-2541(98)001 91-0
- PALUMBO-ROE, B.; BANKS, V.; CHENERY, S.; WEISS, D. Tracing sources and fate of zinc in a mining-impacted river catchment: insights from flow measurements, synoptic sampling, and zinc isotopes. In: Wolkersdorfer, C.; Freund, A. (eds.) **Mine Water and Innovative Thinking**. CBU Press, 383-387, 2010.
- PEEL, K.; WEISS, D.; SIGG, L. Zinc isotope composition of settling particles as a prozy for biogeochemical processes in lakes : Insights from the eutrophic lake Greifen, Switzeland. Limnology and Oceanography 54, 1699-1708, 2009.
- PETIT, J.; DE JONG, J.; CHOU, L.; MATTIELLI, N. Development of Cu and Zn Isotope MC-ICP-MS Measurements: Application to Suspended Particulate Matter

and Sediments from the Scheldt Estuary.GeostandardsandGeoanalyticalResearch 32, 149-166, 2008.

https://doi.org/10.1111/j.1751-908X.2008. 00867.x

- PICHAT, S.; DOUCHET, C.; ALBAREDE, F. Zinc isotopes in deep-sea carbonates from the eastern equatorial Pacific over the last 175ka. Earth and Planetary Science Letters 210, 167-178, 2003. https://doi.org/ 10.1016/S0012-821X(03)00106-7
- RIBEIRO, A.; FIGUEIREDO, A.; SANTOS, J.: DANTAS, E.; COTRIM, M.: FIGUEIRA, R.; SILVA-FILHO, E.; WASSERMAN, J. Combined SEM/AVS and attenuation of concentration models for the assessment of bioavailability and mobility of metals in sediments of Sepetiba Bay (SE Brazil). Marine Pollution Bulletin 68. 55-63, 2013. https://doi.org/ 10.1016/j.marpolbul.2012.12.023
- RONCARATI H.; CARELLI S. G. Considerações sobre estado da arte dos processos geológicos cenozóicos atuantes na baía de Sepetiba. In: Rodrigues, M. A.C.; Pereira, S. D.; dos Santos, S. B. (eds) Baía de Sepetiba: Estado da Arte. Corbã, Rio de Janeiro. pp. 12-36, 2012.
- RUDNICK, R.L.; GAO, S. Composition of the Continental Crust. In: Holland, H.D.; Turekian, K. K. (eds). Treatise on Geochemistry. Elsevier, Amsterdam. 3: 1-64, 2004.
- SHIEL, A.; WEIS, D.; ORIANS, K. Evaluation of zinc, cadmium and lead isotope fractionation during smelting and refining. 2010. Science of the Total Environment 408, 2357-2368, 2010. https://doi.org/10.1016/j.scitotenv.2010.02.
- 016 SHIEL, A.; WEIS, D.; ORIANS, K. Tracing cadmium, zinc and lead sources in bivalves fromthe coasts of western Canada and the USA using isotopes. **Geochimica et Cosmochimica Acta** 76, 175-190, 2012. https://doi.org/10.1016/j.gca.2011.10.005
- SHIEL, A.; WEISS, D.; COSSA, D.; ORIANS, K. Determining provenance of marine metal pollution in French bivalves using Cd, Zn and Pb isotopes. Geochimica et Cosmochimica Acta 121, 155-167, 2013. https://doi.org/10.1016/j.gca.2013.07.005
- SIVRY Y.; RIOTTE J.; SONKE J.; AUDRY S.; SCHAFER J.; VIERS J.; BLANC G.; FREYDIER R.; DUPRE B. Zn isotopes as

tracers of anthropogenic pollution from Znore smelters The Riou Mort-Lot River system. **Chemical Geology** 255, 295-304, 2008.

https://doi.org/10.1016/j.chemgeo.2008.06. 038

- SOUTO-OLIVEIRA, C. E.; BABINSKY, M.; ARAÚJO, D. F.; ANDRADE, M. F. Multiisotopic fingerprints (Pb, Zn, Cu) applied for urban aerosol source apportionment and discrimination. Science of the Total Environment 626, 1350-1366, 2018. https://doi.org/10.1016/j.scitotenv.2018.01. 192
- SOUTO-OLIVEIRA, C. E.; BABINSKI, M.; ARAÚJO, D. F.; WEISS, D.; RUIZ, I. R. Multi-isotope approach of Pb, Cu and Zn in urban aerosols and anthropogenic sources improves tracing of the atmospheric pollutant sources in megacities. **Atmospheric Environment** 198, 427-437, 2019.

https://doi.org/10.1016/j.atmosenv.2018.11. 007

- TONHÁ, M.; GARNIER, J.; ARAÚJO, D.; CUNHA, B.; MACHADO, W.; DANTAS, E.; ARAÚJO, R.; KUTTER, V.; BONNET, M.; SEYLER, P. Behavior of metallurgical zinc contamination in coastal environments: A survey of Zn from electroplating wastes and partitioning in sediments. Science of the Total Environment 743, 140610, 2020.
- TONHÁ, M. S.; , D.; ARAÚJO, R.; CUNHA B, MACHADO, W.; PORTELA, J.; SOUZA, J.; CARVALHO, H.; DANTAS, E.; ROIG, H.; SEYLER, P.; GARNIER, J. Trace metal dynamics in a industrialized Brazilian river: A combine application of Zn isotopes, geochemical portioning, and multivariate statistics. Journal of Environmental Sciences 101: 313-325, 2021. https://doi.org/10.1016/j.scitotenv.2020.140

610 TRIVEDI, P.; AXE, L. Modeling Cd and Zn

IRIVEDI, P.; AXE, L. Modeling Cd and Zn sorption to hydrous metal oxides. Environmental Science & Technology 34, 2015-2223, 2000.

https://doi.org/10.1021/es991110c

VOEGELIN, A.; PFISTER, S.; SCHENOST, A.; MARCUS, M.; KRETZCHMAR, R. Changes in Zinc Speciation in Field Soil after Contamination with Zinc Oxide.
Environmental Science & Technology 39, 6616-6623, 2005. https://doi.org/10.1021/es047962g

- WANG, L.; JIN, W.; WEISS, D.;
 SCHLEICHER, N.; WILCKE, W.; WU, L.;
 GUO, Q.; CHEN, J.; O'CONNOR, D.;
 HOU, D. Possible application of stable isotopes compositions for the identification of metal sources in soil. Journal of Hazardous Materials 407, 124812, 2021.
 https://doi.org/10.1016/j.jhazmat.2020.1248 12
- WASSERMAN, J.C.; BARROS, S.; LIMA, G. Planning dredging services in contaminated sediments for balanced environmental and investment costs. **Journal of Environmental Management** 121, 48-56, 2013. https://doi.org/10.1016/j.jenvman.2013.02.0 24
- WASSERMAN, J.C.; WASSERMAN, M. A.; BARROCAS, P.; ALMEIDA, A. Predicting pollutant concentrations in the water column during dredging operations: Implications for sediment quality criteria. Marine Pollution Bulletin 108, 24-32, 2016. https://doi.org/ 10.1016/j.marpolbul.2016.05.005
- WIEDERHOLD, J. Metal stable isotope signatures as tracers in environmental geochemistry. Environmental Science & Technology 49, 2606–2624, 2015. https://doi.org/10.1021/es504683e
- XIA, Y.; GAO, T.; LIU, Y.; WANG, Z.; LIU, C.; WU, Q.; QI, M.; LV, Y.; LI, F. Zinc isotope revealing zinc's sources and transport processes in karst region. **Science** of the Total Environment 724, 138191, 2020.
- YIN, N-H.; SIVRY, Y.; BENEDETTI, M. F.; LENS, P. N. L.; VAN HULLEBUSCH, E.
 D. Application of Zn isotopes in environmental impact assessment of Zn-Pb metallurgical industries: A mini review.
 Applied Geochemistry 64, 128-135, 2016. https://doi.org/10.1016/j.apgeochem.2015.0 9.016
- ZIMMERMAN, T.; MOHAMED, A. F.; REESE, A.; WIESER, M. E.; KLEEBERG, U.; PROFROCK, D.; IRRGEHER, J. Zinc isotopic variation of water and surface sediments from the German Elbe River. Science of the Total Environment 707, 135219, 2020.

https://doi.org/10.1016/j.scitotenv.2019.135 219

ZHANG, R.; RUSSEL, J.; XIAO, X.; ZHANG, F.; LI, T.; LIU, Z.; GUAN, M.; HAN, Q.; SHEN, L.; SHU, Y. Historical records, distributions and sources of mercury and zinc in sediments of East China sea: Implication from stable isotopic compositions. **Chemosphere** 205, 698-708, 2018. https://doi.org/ 10.1016/j.chemosphe re.2018.04.100